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SentiVec: Learning Sentiment-Context Vector via
Kernel Optimization Function for

Sentiment Analysis
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Abstract— Deep learning-based sentiment analysis (SA)
methods have drawn more attention in recent years, which
calls for more precise word embedding methods. This article
proposes SentiVec, a kernel optimization function system for
sentiment word embedding, which is based on two phases.
The first phase is a supervised learning method, and the
second phase consists of two unsupervised updating models,
object-word-to-surrounding-words reward model (O2SR) and
context-to-object-word reward model (C2OR). SentiVec is aimed
at: 1) integrating the statistical information and sentiment orien-
tation into sentiment word vectors and 2) propagating and updat-
ing the semantic information to all the word representations in a
corpus. Extensive experimental results show that the optimal sen-
timent vectors successfully extract the features in terms of seman-
tic and sentiment information, which makes it outperform the
baseline methods on word similarity, word analogy, and SA tasks.

Index Terms— Kernel function, natural language processing
(NLP), sentiment vector, word embedding.

I. INTRODUCTION

ONE of the key steps in natural language process-
ing (NLP) tasks is to transform the unstructured and

heterogeneous text information into structured data. This calls
for word representation, which embeds words with real-valued
vectors via probabilistic topic modeling or models semantic
vector space models of language [1]. The vectors are the
extracted features applied to subsequent NLP tasks, such as
sentiment analysis (SA) [2], named entity recognition [3],
parsing [4], question answering [5], and so on.

There are mainly two extension algorithms for word
embedding in vector space models: 1) local context window
approaches, like word2vec [6] and 2) global count-based
approaches [7], like latent semantic analysis (LSA) [8]. How-
ever, these algorithms still have some limitations. Methods
based on approaches 1) or 2) usually do not contain both
global and local information at the same time. To address this
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problem, Pennington et al. [1] proposed GloVe, training word
vectors by means of both global co-occurrence counts and
local context window information. Nonetheless, this algorithm
mainly concentrates on capturing semantic information instead
of sentiment information among words. Some algorithms
suffer from the computational complexity problem when the
corpus size grows dramatically.

There are also several existing methods to construct senti-
ment vectors for textual SA [9], [10]. However, these methods
are usually unable to get as good performances as the state-
of-the-art methods on word similarity task.

Thus, we put forward SentiVec, a novel method based
on kernel optimization function, to capture semantic similar-
ity, statistical information, and sentiment information among
words. First, this article analyzes the necessity of capturing
the sentiment orientation of word vectors with respect to
the cosine similarity of word vectors. Next, the word rep-
resentations of sentiment words are trained via a supervised
learning algorithm in the first phase of SentiVec. Then, the
learned vectors are fed into an unsupervised local context
window updating algorithm, consisting of object-word-to-
surrounding-words reward model (O2SR) and context-to-
object-word reward model (C2OR), to learn sentiment vectors
for both sentiment and nonsentiment words in the second
phase. The proposed method achieves better performances on
word similarity, word analogy, and SA tasks than the state-of-
the-art methods word2vec [6] and Glove [1].

The main contributions of this article are shown as follows.

1) Introducing the kernel function into an optimization
function to learn sentiment vectors for SA, in which
continuous sentiment polarity scores rather than discrete
points are used during training process.

2) Efficiently leveraging a global optimization model to
integrate global statistical information, sentiment sim-
ilarity, and sentiment polarity scores into the vectors for
sentiment words.

3) Proposing two local context window iterative updating
models O2SR and C2OR for capturing sentiment sim-
ilarity and semantic information among both sentiment
and nonsentiment words.

The rest of this article is organized as follows. In Section II,
we introduce related work pertaining to word embedding and
sentiment vectors. In Section III, we elaborate the concept of
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SentiVec, global count-based models, and local context win-
dow updating algorithms in detail. In Section IV, we perform
experiments and evaluations on proposed models. Our research
work and future research plan are concluded in Section V.

II. RELATED WORK

A. Word Embedding

Existing word embedding algorithms are primarily based
on two model families: 1) probabilistic topic modeling and
2) vector space models [11].

Classical probabilistic topic modeling is the latent Dirichlet
allocation (LDA)-related model family. LDA was proposed by
Blei et al. [12], which assumed that every document was the
combination of latent topics. There are also several extensions
of LDA in later research. However, these word vectors may
not be as sensible as points in a k-dimensional space since
LDA concentrates on topics instead of word meanings. Some
other LDA-based work [13]–[15] captures sentiment besides
topics. But these models emphasize sentiment-related topics
rather than embedding word in vector spaces.

As mentioned in Section I, there are mainly three model
families in vector space models: 1) global count-based meth-
ods; 2) local context window methods; and 3) hybrid methods.
The first model family is the global count-based method.
For example, LSA [8] is probably the best-known vector
space model in the first model family. LSA aims to embed
words directly [16]. It applies singular value decomposition
(SVD) to factorize a term-document co-occurrence matrix to
learn semantic word representations [11]. Besides, two step
canonical correlation analysis (TSCCA) [17], sparse random
projections [18], and Hellinger principal component analysis
(PCA) [19] are also global count-based methods capturing rel-
evant information from co-occurrence statistics. These global
methods efficiently utilize statistical information [1], but large
quantities of choices (weights, dimensionality reduction algo-
rithm, normalization) are needed to be determined with little
theoretical guidance for researchers to follow [11]. However,
the global count-based method, which is also a kind of statis-
tical method, is generally semantically weak [20]. The second
famous vector space model family is the local context window
method trained on separate local context windows, which
poorly leverages the statistical information of the corpus.
Typical local context window methods include neural proba-
bilistic language model proposed by Bengio [21], C&W [22],
M&H [23], and word2vec [6]. These models use the context
to predict the object words to learn word vectors through the
combination of language models and neural networks. Among
the second models’ families, word2vec is prevalent in NLP
tasks and has a better performance. The third model family is
hybrid model. Hybrid models train on a local context window
and utilize the global statistics at the same time. Among the
models, GloVe [1] attracts more attention in recent research.

The aforementioned word embedding models are mainly
built for general NLP tasks. Moreover, there are some
researches focusing on task-oriented word embedding. Affec-
tiveSpace model [24] is presented for emotive reasoning task
and the consecutive model AffectiveSpace2 [25] is tailored for

concept-level SA. These models perform well on SA-related
tasks and inspire the later research work on sentiment vector
model.

B. Sentiment Vector

The word representation models are put forward for multiple
NLP tasks in the beginning. Later in order to improve the
performance on SA, some research articles gradually focus on
integrating sentiment information into the word vector, which
is called sentiment vector.

Maas et al. [11] presented a probabilistic model cap-
turing semantic and sentiment similarity at the same time.
Tang et al. [26] proposed sentiment-specific word embedding
(SSWE) for twitter sentiment classification based on C&W.
Saif et al. [10] put forward SentiCircles for SA on twitter.
And there is also some work introducing the concept and
rule-based representation method of specific sentiment vector
for SA, such as [9] and [27]. However, these methods are
usually not suitable for word relatedness evaluation and some
methods are even not qualified for unsupervised learning.

Recently, some research articles proposed an overall frame-
work for embedding based on deep learning methods.
Cambria et al. [28] employed multilayer neural network for
target word representation and bidirectional long short-term
memory (BiLSTM) for context embedding. In addition, some
articles focused on extending existing methods. Shi et al. [29]
proposed a model for learning domain-specific and sentiment
aware word embeddings based on word2vec extensions. Fu et
al. [30] put forward SWpredict and SWRank for sentiment
word embedding based on word2vec extensions. Li et al. [31]
proposed a GloVe-based method DLJT2 for learning sentiment
vector. Yu et al. [32] presented a refinement model applicable
to pretrained word vectors, such as word2vec and GloVe,
for sentiment embeddings. The models listed above usually
obtain good performances on specific sentiment classification
tasks. However, these methods analyze the learned embeddings
mainly based on sentiment classification tasks and lack the
intrinsic evaluation of word embeddings, e.g., word relatedness
evaluation, word analogy, and so on.

Thus, this article proposes a semisupervised word embed-
ding method incorporating semantic information, sentiment
orientation, and statistical information into word vectors. Our
method is designed as a combination of local context method
and global statistics. It aims to gain good performance on
word relatedness evaluation, word analogy, and sentiment
classification tasks.

III. MECHANISM OF SentiVec MODEL

Our SentiVec model is tailored for learning
sentiment-context vectors discussed in Section III-A. The
model and algorithms, based on two phases, are elaborated
in Sections III-B and III-C. The first phase proposes a
supervised learning method (also a global count-based
method) for the embedding of sentiment words, capturing
sentiment information and similarities. This phase requires
word occurrences and calibrated sentiment scores and
uses the adaptive stochastic gradient descent to solve the
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Fig. 1. Changes of the intersection angle in different dimensional space.
(a) Preimage in low-dimensional space. (b) Image in high-dimensional space.

objective function. The second phase is an unsupervised
learning method (also a local context window method) for
learning sentiment-context vectors of both sentiment words
and nonsentiment words, which is designed for learning
contextual semantic information and sentiment similarities
among all words in the corpus.

A. Sentiment-Context Vector

In this section, we build a sentiment vector (sentiment-
context vector) capable of describing sentiment orientations
and similarities as well as semantic similarities among words.

It shows that the correlation between the sentiment similari-
ties and semantic relatedness is not significant sometimes. For
example, in sentence “the buffet breakfast is good/bad,” senti-
ment words “good” and “bad” are totally opposite in sentiment
orientation, although they may be very close in semantic
relatedness. This means the intersection angle between the
word vectors tends to be π in terms of sentiment orientation
and the one in terms of semantic similarity should be less
than (π/2). This means it is impossible to treat the two
intersection angles as one in the same vector space. And it
shows that if we consider the image vectors after the nonlinear
transformation in the higher dimensional space in terms of
sentiment information and consider the preimage vectors in
the lower dimensional space in terms of semantic information,
the aforementioned dilemma will be solved.

It is assumed that, given word wi , the word vector vi ∈ R
d ,

v′
t ∈ R

m , where d and m are the dimensions and d < m.
As shown in Fig. 1, the sentiment-context vector for word
wi is a 3-D vector v′

i = (v ′
i1, v

′
i2, v

′
i3), where v ′

i1, and v ′
i2

depict the contextual semantic information of word wi , and
v ′

i3 depicts the sentiment information of word wi . Thus, v′
i

is the image vector in a higher dimensional space in terms
of sentiment information as well as semantic information.
And v i = (vi1, vi2) is the preimage in a lower dimensional
space in terms of semantic information. Similarly, we could
assume a sentiment-context vector for word w j , with v′

j =
(v ′

j1, v
′
j2, v

′
j3) as an image vector in a higher dimensional

space in terms of sentiment information as well as semantic
information. And it is also assumed v j = (v j1, v j2) is the
preimage in a lower dimensional space in terms of semantic
information.

In special cases, as shown in Fig. 1, the intersection angle
ω between preimage vectors v i and v j is significantly less

than (π/2), which indicates the cosine similarity s(v i , v j ) =
(vT

i v j/‖v i‖‖v j‖) > 0. After nonlinear transformation ϕ :
R

d → R
m , when d = 2 and m = 3, the intersection angle θ

between image vectors v′
i and v′

j is significantly larger than
(π/2), which means the cosine similarity s(ϕ(v i ), ϕ(v j )) =
(ϕ(vi )

T ϕ(v j )/‖ϕ(vi )‖‖ϕ(v j )‖) < 0. This means, considering
both the sentiment information and context semantic infor-
mation, the cosine similarity will change compared with the
original case where only contextual semantic information is
given.

However, simply introducing sentiment information, such as
sentiment scores, into one more vector component is not rigor-
ous in mathematics and it cannot ensure that the positive and
negative vectors are linearly separable in a high-dimensional
space.

Thus, one of the key goals is to find a qualified nonlinear
transformation ϕ : R

d → R
m , meeting the aforementioned

requirements related to contextual semantic and sentiment
information, so that the image vectors containing different sen-
timent information are linearly separable in a high-dimensional
feature space. To accomplish this goal, two tasks have to
be achieved: 1) reducing the computation complexity and
2) reducing the distortion of sentiment information while
updating the word vectors in low-dimensional feature space.

1) Reducing the Computation Complexity: Given such a
qualified specific nonlinear transformation ϕ, all the preimage
vectors are mapped into a high-dimensional feature space R

m

from a low-dimensional input space R
d . But this will lead to

the curse of dimension as d and m increase.
Considering the distance between the two image vectors

ϕ(vi ) and ϕ(v j ) in high-dimensional space, d(ϕ(v i ), ϕ(v j )) =
‖ϕ(v i ) − ϕ(v j )‖ = 〈ϕ(v i ), ϕ(v i )〉 − 2〈ϕ(v i ), ϕ(v j )〉 +
〈ϕ(v j ), ϕ(v j )〉. If both the two image vectors have the same
norm, 〈ϕ(v i ), ϕ(v j )〉, i.e., the similarity (inner product) of
ϕ(vi ) and ϕ(v j ), becomes the only factors influencing the
distance. In this case, different input vectors vi , v j could be
embedded into different clusters in high-dimensional space
through controlling the inner product between their image
vectors ϕ(vi ), ϕ(v j ) by rule. And if the inner product
〈ϕ(v i ), ϕ(v j )〉 could be obtained through computation without
knowing the nonlinear transformation ϕ, this will reduce
much more computation complexity and alleviate the curse
of dimension.

According to [33], kernel-based algorithms are elegant
in the sense that the “kernel trick” [34] enables the algo-
rithm to operate implicitly in very high- (sometimes infinite-)
dimensional feature spaces without explicitly knowing the
actual feature space representation ϕ. That is, it simplifies the
computation complexity through K (v i , v j ) = 〈ϕ(v i ), ϕ(v j )〉,
where K (v i , v j ) is the kernel function. More generally, kernel
function is defined as K (·, ·) : R

d ×R
d → R

+∪{0}. Moreover,
the Gaussian or radial basis function (RBF) kernel [35] induces
an infinite dimensional feature space [36], where all image
vectors, with the same norm, become orthogonal when they are
distant in the input space with respect to the scale parameter
σ 2. Here, the Gaussian kernel is represented as K (v i , v j ) =
exp(−(‖v i − v j ‖2/σ 2)). Therefore, Gaussian kernel is a good
choice to solve the first problem.
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2) Reducing the Distortion of Sentiment Information While
Updating the Word Vectors in Low-Dimensional Feature
Space: In our model, if we preset a benchmark vector o,
we can easily represent the intrinsic sentiment scores of the
other sentiment vector v i via s(ϕ(v i ), ϕ(o)) = K (vi , o),
where the range of the sentiment scores is [−1,1]. The
basic benchmark vector o is usually the sentiment vector
with the most positive or negative sentiment score. Based
on these conditions, the word embedding vi for sentiment
word wi could be generated through training K (vi , o) toward
a manually labeled sentiment score. But the word vectors
containing only sentiment information are not capable of
representing contextual semantic information. In this case,
the word embedding may be updated during the process of
capturing semantic information into vectors. And it would
be better if the sentiment information would not be distorted
during updating procedure.

For all translation-invariant kernels, it holds that K (v i +
γ , o + γ ) = K (vi , γ ). Thus, if γ , which is the variation of
vector v i , in updating process is known, a new benchmark
vector o+γ could be obtained. Then, the dot product of v i +
γ and o + γ after updating is the same as that of vi and
o in high-dimensional space. This means that the sentiment
information of sentiment word wi will not be distorted, since
K (v i +γ , o+γ ) = K (v i , o). In this case, the Gaussian kernel,
as a translation-invariant kernel, is a good choice to solve the
second problem as well.

According to the aforementioned analysis, the translation-
invariant Gaussian kernel with the same norm for all vectors
and capacity for computation complexity reduction is the
suitable choice for solving the aforementioned problems in
this article.

B. Capturing Sentiment Information

A probabilistic model of the scores of sentiment words
is built based on a continuous mixture distribution over
sentiment words. It is assumed that the sentiment scores
y = (y1, y2, . . . , yN ) are subject to multivariate probability
distribution. Then, some notations are introduced. Given a
sentiment lexicon D, N = |D|, yi ∈ R is the labeled
normalized sentiment score of word wi , so yi is an observed
value. y is an N-dimensional vector for labeled sentiment
scores, where N is the number of sentiment words. V is
the matrix of word vectors and V ∈ R

(N×d), where d
is the dimension of the vectors. It is assumed that the
intrinsic sentiment score si of word wi can be computed
through si = (K (vi , o)/(K (vi , vi))

1/2(K (o, o))1/2) according
to Section III-A. In our model, the value of the basic bench-
mark vector o defined above is selected manually, so s(V )
is the N-dimensional vector for intrinsic sentiment scores,
where we suppose that s(V ) is a function of variable V
and s(V ) = (s1, s2, . . . , sN ). The probability of the sentiment
scores is thus

p(y)=
∫

p(y, s(V ))d S(V )=
∫

p(y|s(V ))p(s(V ))ds(V ).

(1)

We define the conditional distribution p(y|s(V )) using a
multivariate normal distribution function with parameters �
and s(V ). � is the covariance matrix, � ∈ R

(N×N). s(V ) is
the mean vector of multiple random variables. The conditional
probability density function of y is

p(y|s(V ))

= 1

(2π)
N
2 |�| 1

2

exp

(
−1

2
(y − s(V ))T �−1(y − s(V ))

)
. (2)

To reduce the number of unknown parameters, we use �̂ as
the estimate of �. Note that if � is an identity matrix, each
component of the vector y is conditionally independent. In this
work, it is assumed that the components of the vector y are
mutually independent, for it is supposed that the annotations
of sentiment words are conditionally independent.

Instead of simply assigning an estimate of p(s(V )) in (1),
we assume a multivariate normal distribution prior on s(V ),
which is also called the Gaussian prior. It is supposed that
the intrinsic sentiment orientations of the sentiment words
are usually different from zero and explicitly positive or
negative, thus each component of the mean vector is assumed
to be proportional to its observation sample yk which is the
corresponding component of vector y. The probability density
function of s(V ) is

p(s(V ))

= 1

(2π)
N
2 |�−1

0 | 1
2

exp

(
−1

2
(s(V )−δ y)T�−1

0 (s(V )−δ y)
)

(3)

where �0 is a covariance matrix and �0 ∈ R
(N×N). We use

�̂0 as an estimate of �0 according to the corpus, which is
illustrated in Section IV. δ is a scalar very close to zero.

Then, a maximum likelihood learning for our model is
derived, given a set of calibrated sentiment lexicons and
unlabeled documents. The model is designed to search for the
best estimate of s(V ) for the maximum of p(s(V )| y). Thus,
the learning problem is

max
V

p(s(V )| y) = max
V

p(y, s(V ))

p(y)

= max
V

p(y|s(V ))p(s(V ))∫
p(y|s(V ))p(s(V ))ds(V )

∝ max
V

p(y|s(V ))p(s(V )) (4)

which is the maximum a posteriori (MAP) problem. Accord-
ing to the monotonicity of the ln(x) function, we simplify the
learning problem as

max
V

p(s(V )| y) ∝ max
V

ln(p(y|s(V ))p(s(V )))

∝ min
V

⎧⎪⎨
⎪⎩

1

2
(y − s(V ))T�−1(y − s(V ))

+1

2
(s(V )−δ y)T�−1

0 (s(V )−δ y)

⎫⎪⎬
⎪⎭.

(5)

In this work, to simplify the optimization function, we set
‖ϕ(vi)‖ = (K (vi , vi ))

1/2 = 1. Besides, � is assumed to be
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an identity matrix. Therefore, the optimization function can be
written as

min
V

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

n∑
i=1

(K (vi , o) − yi)
2

+
n∑

i=1

∑
j 
=i

Ai, j [(K (vi , o)−δi yi)−(K (v j , o)−δ j y j)]2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

s · t · √
K (vi , vi ) = 1 ∀i

min
V

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

n∑
i=1

(K (vi , o) − yi)
2

+α

2

n∑
i=1

∑
j 
=i

Ai, j [(K (vi , o)−δi yi)−(K (v j , o)−δ j y j)]2

+β

n∑
i=1

λi (
√

K (vi , vi)−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

where �−1
0 = L = D − A, L is a Laplacian matrix, D is

a degree matrix, and A is an adjacency matrix. α and β are
the hyper-parameters and λi is the Lagrange multiplier. In this
article, we adopt the Gaussian kernel function to compute the
inner product between nonlinear transformed ϕ(vi) and ϕ(v j)
for word wi and w j since for any vector vi , K (vi , vi ) =
1 in the Gaussian kernel function. For other shift-invariant
kernels such as the Laplacian kernel and the Cauchy kernel,
the formula K (vi , vi ) = 1,∀t also holds. Thus, the final
optimization function is

arg min
V

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

N∑
i=1

(K (vi , o) − yi)
2

+α

2

N∑
i=1

∑
j 
=i

Ai, j [(K (vi , o)−δi yi) −(K (x j , o)−δ j y j)]2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

where

K (xi , o) = exp

(
−‖ vi − o ‖2

2σ 2

)
.

And

o =
{

1, if yi ∈ R+
−1, if yi ∈ R−

since the range of K (Rm, R
m) ⊆ R

+ ∪ {0}. We use the
sentiment score of sentiment word wi in the sentiment lexicon
as yi .

C. Capturing Semantic Information and Propagating
Sentiment Orientation

After solving the final optimization function for V in
the first phase, we consider the propagation of sentiment
orientation to other word vectors beyond the sentiment lexicon
and capture the semantic information of all the words in the
training corpus. In the second phase, two local context window
algorithms, O2SR and C2OR, are proposed to update the

Fig. 2. O2SR architecture.

vectors for both sentiment words and nonsentiment words. The
objective functions of both algorithms are devised to maximize
the expected reward, combined with negative sampling. The
updating algorithms, of which the detailed models are elabo-
rated in Sections III-C1 and III-C2, respectively, are capable
of integrating sentiment similarity and semantic information
for all the training vectors. And the pseudo-codes of both
algorithms are shown in Sections III-C1 and III-C2.

1) Object-Word-to-Surrounding-Words Reward Model: In
O2SR, the classifier predicts the surrounding word (w ∈
Context(wc)), given the object word (also called current word)
wc; then, it obtains reward R·(·) according to the classification
result. Therefore, the objective of the model is to maximize
the expected reward of predicting surrounding words based on
the object word in the same sentence. This model is denoted
as O2SR. It is elaborated in detail as follows. Fig. 2 is the
illustration of the O2SR model.

Given a context window (wc, Context(wc)), surrounding
word w ∈ Context(wc), and a corresponding negative sample
set Uw, we assume a sigmoid model for p(u|w), the probabil-
ity of predicting word u given word w, where u ∈ {wc ∪ Uw.
We use vw as the word representation of surrounding word w
and assume that each word has an auxiliary vector θw besides
the sentiment vector

p(u | w) =
{

σ
(
vT

wθu
)
, Lwc (u) = 1

1 − σ
(
vT

wθu
)
, Lwc (u) = 0

(8)

where the label of the sample word u is

Lwc(u) =
{

1, if u = wc

0, if u 
= wc

and

σ
(
vT

wθu
) = 1

1 + exp(−vT
wθu)

.

This is the key part for learning semantic information. As for
sentiment information, we use Rw(u) = exp(−hw(u))R·(w)
as the sentiment reward for predicting word u given word w,
where hw(u) = (−1)Lwc (u)exp(−(‖ vw − θu ‖2/2σ 2)), R·(w)
is the latest sentiment reward obtained from predicting word
w given a certain word. Therefore, Hw(u) = (rw(u) + 1) :=
exp(−hw(u)) is the total return and rw(u) is the linear return.
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The expected sentiment reward is derived as

E(wc, w, u) = p(u | w)Rw(u)

= σ
(
vT

wθu
)Lwc (u)(

1 − σ(vT
wθu)

)1−Lwc (u)

× exp(−hw(u))R·(w). (9)

For the vectors in the whole corpus C , the log likelihood
reward function is defined as

L =
∑
wc∈C

∑
w∈Contex(wc)

∑
u∈{wc}∪Uw

lnE(wc, w, u)

=
∑
wc∈C

∑
w∈Contex(wc )

∑
u∈{wc}}∪Uw

×
{

Lwc (u)ln
[
σ
(
vT

wθu
)]

+ [1 − Lwc(u)]
× ln

[
1 − σ

(
vT

wθu
)]

+ (−1)Lwc (u)+1exp

(
−‖ vw − θu ‖2

2σ 2

)}
+ lnR0

(10)

arg max
V

L
∝ arg max

V
arg

∑
wc∈C

∑
w∈Contex(wc)

∑
u∈{wc}∪Uw

×
{

Lwc (u)ln
[
σ
(
vT

wθu
)]

+ [1 − Lwc(u)]ln[
1 − σ

(
vT

wθu
)]

+(−1)Lwc (u)+1exp

(
−‖ vw − θu ‖2

2σ 2

)}
(11)

where R0 is the original(first) return of predicting the first
word in corpus C . In (11), the objective of the O2SR model
is also to maximize the total return of prediction. L(wc, w, u)
is written as lnE(wc, w, u), then the gradient of L(wc, w, u)
can be written as

∂L(wc, w, u)

∂θu

= [Lwc(u) − σ(vT
wθu)]vw

+ (−1)Lwc (u)

σ 2
(θu − vw)exp

(
−‖ vw − θu ‖2

2σ 2

)
(12)

∂L(wc, w, u)

∂vw

= [Lwc(u) − σ(vT
wθu)]θu

+ (−1)Lwc (u)

σ 2
(vw − θu)exp

(
−‖ vw − θu ‖2

2σ 2

)
. (13)

2) Context-to-Object-Word Reward Model: In C2OR, the
classifier predicts the object word wc, given the context
Context(wc); then, it obtains reward R·(·) according to the
classification result. Therefore, the objective of the model is
to maximize the expected reward of predicting the objective
word based on the context in the same sentence. This model
is denoted as C2OR. Using the notations in Section III-C1,

Fig. 3. C2OR architecture.

the model is elaborated in detail as follows. Fig. 3 is the
illustration of the C2OR model.

Given a context window (wc, Context(wc)), surrounding
word w ∈ Context(wc) and a corresponding negative sample
set Uwc , we assume a sigmoid model for p(u|Context(wc)), the
probability of predicting word u given context Context(wc),
where u ∈ {wc ∪ Uwc . We use xwc = ∑

w∈Context(wc)
vw as

the word representation of the context for object word wc and
assume that each word has an auxiliary vector θ besides the
sentiment vector

p(u|Context(wc)) =
{

σ
(
xT

wc
θu

)
, Lwc (u) = 1

1 − σ
(
xT

wc
θu

)
, Lwc (u) = 0

(14)

where the label of the sample word u is

Lwc(u) =
{

1, if u = wc

0, if u 
= wc

and σ(xT
wc

θu) = (1/1 + exp(−xT
wc

θu)). This is the key part
for learning semantic information. As for sentiment infor-
mation, we use Rwc(u) = exp(−hwc(u))R·,t−1 as the senti-
ment reward of predicting word u given context Context(wc),
where hwc(u) = (−1)Lwc (u)exp(−(‖ vwc − θu ‖2/2σ 2)), R·,t−1

is the latest sentiment reward obtained from last prediction
(t− 1th prediction). Therefore, Hwc(u) = (rwc (u) + 1) :=
exp(−hwc (u)) is the total return and rwc(u) is the linear return.
The expected sentiment reward is derived as

E(wc, Context(wc), u)

= p(u | Context(wc))Rwc(u)

= σ
(
xT

wc
θu

)Lwc (u)(
1 − σ(xT

wc
θu)

)1−Lwc (u)

· exp(−hwc(u))R·,t−1. (15)

For the vectors in the whole corpus C , the log likelihood
reward function is defined as

L =
∑
wc∈C

∑
u∈{wc}∪Uwc

lnE(wc, Context(wc), u)

=
∑
wc∈C

∑
u∈{wc}∪Uwc

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lwc(u)ln
[
σ
(
xT

wc
θu

)]
+[1 − Lwc (u)]ln[

1 − σ
(
xT

wc
θu

)]
+(−1)Lwc (u)+1exp

(
−‖ vwc − θu ‖2

2σ 2

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ lnR0 (16)
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arg max
V

L
∝ arg max

V

∑
wc∈C

∑
u∈{wc}∪Uwc

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lwc (u)ln
[
σ
(
xT

wc
θu

)]
+[1 − Lwc(u)]ln[

1 − σ
(
xT

wc
θu

)]
+(−1)Lwc (u)+1exp

(
−‖ vwc − θu ‖2

2σ 2

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(17)

where R0 is the original(first) return of predicting the first word
in corpus C . In (17), the objective of the C2OR model is also to
maximize the total return of prediction. L(wc, Context(wc), u)
is written as lnE(wc, Context(wc), u); then, the gradient of
L(wc, Context(wc), u) can be written as

∂L(wc, Context(wc), u)

∂θu

= [
Lwc (u) − σ

(
xT

wc
θu

)]
xwc

+ (−1)Lwc (u)

σ 2
(θu − vwc)exp

(
−‖ vwc − θu ‖2

2σ 2

)
(18)

∂L(wc, Context(wc), u)

∂xwc

= [
Lwc (u) − σ

(
xT

wc
θu

)]
θu

+ (−1)Lwc (u)

σ 2
(vwc − θu)exp

(
−‖ vwc − θu ‖2

2σ 2

)
. (19)

3) Updating Algorithm of SentiVec in the Second Phase:
As mentioned in the first paragraph of Section III-C above,
the model in the first phase is tailored for learning word
embedding for sentiment words. After solving the objective
function in Section III-B, the vectors of sentiment words are
fed to the algorithm in the second phase, which leads to the
final result of SentiVec for both sentiment and nonsentiment
words in the whole corpus via iterative random gradient
descent updating.

The pseudo-code of the second phase is shown as follows.

IV. EXPERIMENT

A. Construction of SentiVec

1) First Phase: The famous SentiWordNet [37] is utilized
as the source of calibrated sentiment scores. SentiWordNet
measures the relative sentiment polarities of each word. That
is, each word has a positive polarity and a negative polarity
simultaneously, with calibrated scores ranging from zero to
one on each polarity. The value of the score indicated the
relative degree in each sentiment orientation (positive or
negative). Besides, a word may have several records in the
SentiWordNet since it may have different part of speech. For
simplicity, we calculate the difference between two scores
on positive and negative polarity to represent the absolute
sentiment score of a word, where the sign of the difference
stands for the polarity of a word and its absolute value
indicates the degree in corresponding sentiment orientation.
Then, we merge different records of a word. Finally, a positive
sentiment lexicon with 3431 words and a negative lexicon
with 5437 words are obtained.

Updating Algorithm for O2SR
Input v (vectors of sentiment words)
Random initialization for other vectors
FOR wc ∈ C DO
{

FOR w ∈ Contex(wc) DO
{

e = 0
FOR u ∈ {wc ∪ Uw DO
{
l = (−1)Lwc (u)

σ 2 (vw − θu)ex p
(
−‖vw−θ u‖2

2σ 2

)
p = σ

(
vT

wθu
)

q = η(Lwc (u) − p)
e+ = qθu + l
θu+ = qvw − l

}
vw+ = e

}
}

Updating Algorithm for C2OR
Input v (vectors of sentiment words)
Random initialization for other vectors
FOR wc ∈ C DO
{

e = 0
xwc = ∑

w∈Context(wc)
vw

FOR u ∈ {wc ∪ Uwc DO
{

l = (−1)Lwc (u)

σ 2 (vwc − θu)ex p
(
−‖vwc −θu‖2

2σ 2

)
p = σ

(
xT

wc
θu

)
q = η(Lwc(u) − p)
e+ = qθu + l
θu+ = q xwc − l

}
FOR w ∈ Contex(wc) DO
{

vw+ = e
}

}

Next, after traversing the TripAdvisor1 data set, statistical
information of the word occurrence is extracted and stored
in matrix B , then the word similarity matrix �0 is generated
through

�0,i j =
{

lgBi j , if Bi j > 0

0, otherwise.

Fed with the sentiment lexicons and word similarity matrix,
the optimization function is designed to optimize the
sentiment-context vector for sentiment words in the vector
space. In this phase, σ and α are set to 5 and 0.2, respectively.

2) Second Phase: To learn the contextual semantic infor-
mation and sentiment similarities, our model was trained on
approved large-size corpora, a 2018 Wikipedia dump with

1http://www.cs.virginia.edu/∼hw5x/dataset.html
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TABLE I

CONFIGURATION OF HYPER-PARAMETER

2.4 billion tokens distributed in more than 4.4 million articles2.
The quality of this corpora is fairly good since it is clean and
all-inclusive. In this section, the hyper-parameter σ 2 is set to
585. The other key hyper-parameters are listed in Table I.

The hyper-parameters in both phases are selected according
to the parameter analysis based on many repeated experiments
on a small-scale data set. And the selection of hyper-parameter
σ 2 in the Gaussian kernel is positively related to the dimension
of input vectors.

B. Evaluation Methods

The sentiment-context vectors learned from our proposed
SentiVec are evaluated on three NLP tasks, namely, word
analogy, word similarity, and sentiment classification tasks.

1) Word Analogy: Word analogy task is devised to evaluate
the learned relationships of word vectors, popularized by
Mikolov et al. [38]. It contains many questions like “Beijing
is to China as Paris is to __?.” It is an exact answer if the
result of this question is France. Furthermore, it is supposed
that the word vectors generated from a vector space model
are more probable to successfully describe the relationships of
words in the real world if the model correctly answers as many
such questions as possible from the evaluation data set3. The
evaluation data set comprises 19 544 questions and is divided
into semantic and syntactic subsets. The semantic questions
are mainly analogies pertaining to places or people, like the
aforementioned example. The syntactic questions are mainly
analogies about forms of adjectives or verb tenses [1]. For
example, “write is to writing as listen is to __?” SentiVec
answers this question in the real world by finding a word
whose word vector is closest to the result of the operation
vwriting − vwrite + vlisten

4 from the perspective of the cosine
similarity. Statistics of word analogy evaluation data set is
listed in Table II.

2) Word Similarity: In addition, to directly evaluate the
performance of SentiVec, we also perform the WordSim-353
[39] task and employ the cosine similarity to measure the
similarity degree of word pairs. For instance, the cosine
similarity of word pair “tiger & cat” is calculated by
(vT

tigervcat/‖vtiger‖‖vcat‖). The human rating score ranges from
0 to 10, while the cosine similarity score ranges from −1 to 1.
Therefore, we employ the Spearman correlation coefficient to
measure the similarity between human rating sequence and
cosine similarity sequence.

2https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.
bz2

3https://code.google.com/archive/p/word2vec/source/default/source
4Wi is the word vector of word i .

TABLE II

STATISTICS OF WORD ANALOGY DATA SET

TABLE III

STATISTICS OF STANFORD SENTIMENT TREEBANK

3) Sentiment Analysis: SA task is our basic focus since the
SentiVec incorporates the sentiment information. SA refers
to the use of text analysis and computational linguistics to
identify and extract subjective information in source materi-
als [40]–[42]. SA is extensively applied to product reviews
and social media for a variety of applications, such as
blogs [43], [44], Twitter [10], [45], and news [46]. It is
aimed at analyzing users’ sentiment polarities toward products,
whereas opinion mining involves extracting users’ opinions
or orientations toward entities. There are two approach fam-
ilies for SA: 1) computational linguistic approaches, such
as the lexicon-based SA methods [42], [47] and 2) the
machine learning approaches, such as Naïve Bayes [48], [49],
Bayesian network [50], neural networks [51], and support
vector machine (SVM) [52]. SA, especially sentence-level
sentiment polarity classification, is also applicable to evaluate
the quality of word representations on sentiment information
captured by different word embedding methods [53]. In this
article, both the approved classifier SVM [54] and advanced
neural network classifier convolutional neural network-long
short term memory (CNN-LSTM) [55] are utilized to predict
sentiment polarity of a review text. Given an input sentence
Sen = (w1, w2, . . . , wn) that contains n words, we use the
average vector of all the word vectors to represent the sentence
and then take the average vector as features to further feed
the SVM classifier. Neural network classifier CNN-LSTM is
capable of processing sequential data. Thus, we utilize the
word vector of each word in Sen to feed the classifier in
order. Fine-grained SA is conducted on Stanford Sentiment
Treebank, a classic movie reviews data set [56]. Statistics of
Stanford Sentiment Treebank data set is listed in Table III.

Besides, the proposed model is also compared with other
word vector models containing sentiment and semantic
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information on a polarity data set introduced by Pang and
Lee [48]. The data set is composed of 2000 movie reviews with
binary sentiment polarity from the Internet movie database
(IMDB). The models are evaluated by the SVM via LIB-
SVM [54], and the SVM parameters are the same as [48].
In this experiment section, models are trained on 25 000
labeled movie reviews from IMDB and 50 000 unlabeled
movie reviews from IMDB [11]5. Since all the word vectors
in this section are of 50-D, the hyper-parameters of SentiVec
are tuned accordingly during the training process. Here, in the
second phase, the window size is set to 18, σ 2 is set to 3.5,
the learning rate is set to 0.025, and the min-count is set to 15.

C. Baseline Models

The SentiVec is compared with the following word repre-
sentation algorithms.

1) Word2vec: It has been the most famous and commonly
used word representation technique since its release in 2013 by
Mikolov et al. [6]. The algorithm has two variations, continu-
ous bag of word (cbow) and skip gram (sg). It makes use of the
local semantic information and gets the state-of-the-art results
on several NLP tasks. The word2vec model was trained on the
same corpus as SentiVec. Moreover, shared hyper-parameters
stay the same as SentiVec.

2) GloVe: The model was presented by Pennington et al. [1]
in 2014. It is an unsupervised learning algorithm for obtaining
vector representations for words. Training is conducted on
aggregated global word–word co-occurrence statistics from
the aforementioned corpus, and the resulting representations
showcase the linear substructures of the word vector space.
GloVe exploits not only local semantic information but also
global statistical information. Hence, it shows special superior-
ity in certain cases. Similarly, shared hyper-parameters remain
the same. The setting of some exclusive hyper-parameters
follows the suggestion of GloVe research article. Therefore,
we set xmax = 100 and perform the experiment for 50 itera-
tions since the dimension of the vectors is smaller than 300.

3) Hellinger Principal Component Analysis: Hellinger
PCA (H-PCA) [19] is a word embedding algorithm using
the word co-occurrence statistics and a well-known dimen-
sionality reduction operation PCA [19]6. It is concluded that,
with an appropriate metric, this method can generate word
embeddings as good as the ones generated by deep learning
architectures. All the hyper-parameters are set as the authors
suggested.

4) Word Vector Model (See [11]): The word vector
model [11] captures sentiment content and semantic term-
document information through unsupervised and supervised
algorithm. The word vectors generated from this model are
50-D. The reported experiment result of this model in [11] is
used in this article for comparison.

D. Experimental Results

1) Results of Word Analogy Task: As shown in Table IV,
SentiVec(C2OR) outperforms all the benchmark methods on

5http://www.cs.cornell.edu/people/pabo/movie-review-data
6Source code URL: http://www.lebret.ch/words/

TABLE IV

ACCURACY OF WORD ANALOGY

TABLE V

SPEARMAN RANK CORRELATION ON WORD SIMILARITY TASK

three indices. To be specific, it gains a slight superiority
over benchmarks on semantic questions and a significant
improvement on syntactic questions. The GloVe model is
good at answering semantic questions but relatively weak
in handling syntactic questions. Word2vec(cbow) gets bal-
anced performances on both semantic and syntactic ques-
tions. Semantic questions refer to the analogies about people
and places, while syntactic questions are primarily analogies
with respect to forms of adjectives or verb tenses. People
and places are mainly the relationships such as “capital–
country,” “capital–world,” “country–currency,” and “family
( )–family ( ).” These relationships are quite stable in the
corpus, especially a huge corpus. However, the meanings of
adjectives are changeable in specific context. Therefore, all
the models achieve better performances on semantic questions
than syntactic questions.

2) Results of Word Similarity Task: Table V shows the
results on word similarity task. The similarity scores are
calculated by the cosine similarity between vector pairs.
Then, we utilize Spearman’s rank correlation coefficient to
compute the sequence similarity between calculated cosine
scores and human judgments. Using the Wikipedia data as
the training corpus, SentiVec-based methods outperform other
baselines and obtain the best results on WordSim-353 task.
The sentiment-context vectors successfully describe the rela-
tions between word pairs, which shows the proposed model
improves the training of word representations by a substantial
margin. Moreover, H-PCA model has a result reported from
IMDB data set7. Compared with this result, it is concluded
that a large corpus contributes to the significant improvement
of word embeddings. Therefore, a large corpus is necessary in
order to train a high-quality word embeddings.

3) Results of SA Task: The results of the SA task are
presented in Tables VI and VII. Given the confusion matrix,

7http://www.andrew-maas.net/data/sentiment
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TABLE VI

SENTIMENT POLARITY CLASSIFICATION RESULTS (SVM CLASSIFIER)

TABLE VII

SENTIMENT POLARITY CLASSIFICATION RESULTS (CNN-LSTM CLASSIFIER)

evaluation indices precision, recall and F1-score are calculated
according to the following formulas [42]:

Precisioni = TPi

TPi + FPi
(20)

Recalli = TPi

TPi + FNi
(21)

F − scorei = 2 Precisioni · Recalli

Precisioni + Recalli
. (22)

TPi stands for true positive for the i th category and is equal
to the number of labeled i th-category samples classified into
i th category. FPi represents false positive for the i th category
and is equal to the number of labeled non-i th-category samples
classified into i th category. FNi is false negative for the i th
category and is equal to the number of labeled i th-category
samples classified into non-i th-category.

Table VI shows the precision, recall, F-score, and accuracy
of baseline methods and SentiVec-based methods on fine-
grained sentiment polarity classification of movie reviews.
SentiVec-based methods significantly outperform all the
benchmark methods in the overall trends since they success-
fully introduce sentiment information into the word vectors.
H-PCA and GloVe models show a superiority in classify-
ing the 4th category samples. Word2vec(cbow) is relatively
weak because it lacks the global information, affecting the
quality of word representations. Word2vec(sg) yields good
performances on predicting the 1st, 3rd, and 5th category
samples but gets the worst result in the 4th category prediction.
Compared with other methods, SentiVec-based methods do
well in classifying the 1st, 2nd, 3rd, and 5th category samples
in general. In addition, the difference of 4th category samples
classification performances between SentiVec and the best
result is relatively slight. Importantly, SentiVec(C2OR) has
a balanced performance on predicting movie reviews with
different labels, making it an excellent model in encoding not
only words but also sentences.

TABLE VIII

BINARY SENTIMENT POLARITY CLASSIFICATION RESULTS

Similarly, Table VII shows that SentiVec (C2OR) makes
a significant improvement in classifying movie reviews in
the overall trend. Instead of using the average vectors of
a sentence as the input features, advanced neural network
classifier utilizes the features of each word in a sentence, which
further demonstrates the superiority of the proposed word
embedding model. H-PCA model gets good performances
than any other model in terms of recall of the 4th category
samples. GloVe model is relatively poor in predicting the 1st
and 2nd category samples. Word2vec(cbow) has balanced per-
formances on classifying movie reviews in general. Benefiting
from the sentiment information, SentiVec(C2OR) increases the
performances of fine-grained sentiment polarity prediction by
a large margin.

A significance test is employed to further evaluate the supe-
riority of the proposed model SentiVec(C2OR). All the models
are performed ten times. Then, the result of paired-samples
t-test demonstrates that SentiVec(C2OR) is better than bench-
mark methods.

Table VIII shows the binary sentiment polarity classification
results on IMDB data set. The experiment result of word vec-
tor [11] is a reported result. Word vectors generated from [11]
captures sentiment content and semantic information, which is
likely to belong to a kind of sentiment-context vector described
in this article. The results indicate that the SentiVec outper-
forms another word vector model [11] as well as word2vec on
IMDB data set.
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TABLE IX

ABLATION STUDY ON BINARY SENTIMENT POLARITY CLASSIFICATION

4) Ablation Study: To further explore the proposed SentiVec
model, an ablation study is carried out on two main compo-
nents of the SentiVec, i.e., the sentiment polarity information
and contextual semantic information.

The experiments of the first phase, the second phase, and
the complete SentiVec model are conducted separately on the
IMDB data set. As shown in Table IX, the performance of the
sole first phase degenerates dramatically in terms of classifica-
tion accuracy. This is because the vectors generated from the
first phase of SentiVec contains little semantic information,
which leads to difficulty in document-level representation for
classifier. Besides, the performances of the sole second phase
also degrade in terms of classification accuracy, due to the lack
of sentiment information.

The ablation study proves that the combination of the two
phases integrates both the sentiment information and semantic
information into the SentiVec and improves the experiment
performance eventually.

V. CONCLUSION

In this article, we propose a novel framework SentiVec
combining supervised and unsupervised techniques to learn
high-quality word representations for both sentiment and non-
sentiment words. SentiVec learns the sentiment vectors for
sentiment words at the first phase and then incorporates seman-
tic information into word representations for all words at the
second phase via O2SR or C2OR. The evaluation experiment
results show that the SentiVec improves the quality of word
embedding through designing the kernel-based optimization
function and updating algorithms. SA experiments conducted
on Stanford Sentiment Treebank data set and IMDB data
set explicitly indicate that the SentiVec outperforms baseline
methods in predicting sentiment polarities. Extensive exper-
iments, such as word similarity and word analogy, demon-
strate that the proposed model is superior in depicting the
semantic and syntactic information of word representations in
vector space. The ablation study illustrates the combination
of the first phase and the second phase of the proposed
model assist to capture the sentiment and semantic information
into SentiVec, which improves the performance on sentiment
classification task. For future research, the influence of hyper-
parameters should be discussed to provide insights regarding
the proposed model.
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